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1,. Introduction

Various mean characteristics of atoms - the
averages of Hamiltonian or effective operators, the
total line strengths, the main measures of
configuration interaction (CI) in the electronic
shells - are expre,ssed by the sums over all
many-electron quantum numbers, Such sums also

appear in the formulae for global characteristics
(average energy, variance, skewness, exoess, and

others) of the energy level spectra, including all
levels of one configuration (configuration complex),
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and of the characteristic emission or Auger
spectra, corresponding to the transitions between
all levels of two configurations (configuration
complexes). All these quantities may be expressed

in terms of averages of a product of operators.
L,et us take k operators Oy Oz, . . . ) Ok-u Ok

in the second quantization representation acting
in the space of one configuration or between two
configurations. The average of the product of
these operators with respect to configuration Kr
is defined as follows:

(opz...o1r-ro*)Kt : <4o1*1 ...o\ol)*t, (3)

where O'{ is the operator Hermitian adioint

to oi.
The averages may also be defined in the CI

approximation. Then all (or some) configurations
Ki in Eq. (1) are replaced by configuration com-

plexes $= Kn*Kiz*..., and yi has a me,aning

(oroz...o*-ro*lK,= # ,2r.rKrrrlollKnQ$gtzlozlKzy)...(Krfl*-lo*-tlKa*\AKmloelKyrl, 
(t)

where TL,TZ.... rTk Arc the states Of Configurations'

Some of the configurations Ky Kz, . . . , Kk or even

they aU may be the same, The average is

independent of the coupling scheme; some pure

coupling is commonly used.

From the definition (1), such symmetry prop-

erties for the average follow:

(opz . . . op-toiK, = ffi (ozot . . - okor)K', (z)
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of the state of the comple{ the summation in
the average is carried out over all states of the

complexes. The averages in this approximation may

be ixpressed in terms of the averages (1). This

(oo'g",K

where the subscripts of the operators in the

averages on the right side of equality indicate the

spaces of configurations in which or between which

the operator is acting.
An explicit or algebraic exPression for the

average may be obtained under the assumption

that all radial orbitals are term-independent - then

the summations over the spin-angular parts of
matrix elements can be perforrned algebraically.

However, the matrix elements contain fractional
parenta1e coefficients, which have no standard

expressions, and their sums together with the 3ni

coefficients are unknolvll.
In Refs. IL,zl, a general group theory method

for deriving averages of many-fermion Systems wils

proposed and special summation diagrams sug-

gested. The diagrammatic form of this method was

elaborated [3, 4] and applied to electronic shells

of atoms [5-7]. The aim of this paper is to

present a comprehensive review of this method

and to show some applications to physical

operators.

2, Dependence of averages on the number of
electrons in shells or subshells

The general method for deriving explicit

expressions for the averages of operators may be

formulated using properties of the irreducible

representations (IR) of higher continuous groups:

the special orthogonal group SOso* r and its
unitary subgroup Ust, where O is the number of

single-electron states in a shell (41 + 2) or subshell

(Zj + 1). The states of all nlN shells (or. nUN

subshells) with the same quantum numbers nl (nli)
and 0 S N s Cl belong to the same IR of
SO3sa.1, and the states of a single shell or subshell

with the glven number of electrons N form a

basis of the same IR of Ug2. These groups are

not convenient for classification of the states

because of the very large number of repeating

terms, but this is not so important when averaging

over all the states. On the other hand, it is very

important that every IR of Ua appears once and

is illustrated by the following example (Ki = K.

Ki=Ki:Kr+K),

only once for the given IR of R3e*1 . This

provides the opportunity to determine explicitlv
the dependence of the average on the number ot
electrons N. For the configuration with one open
shell (subshell), the average of the operator O

reads

( A d,v alO I A d1,'a ), (5)

where A is spinor IR of SO3g2.11, dN is IR of
Ua contained in A and a labels the states in
dN. The superscript of the average indicates

only the number of electrons N instead of
configuration K.

For applying the Wigner-Eckart theorem to
the matrix element in Eq. (5), the operator O
must transform under some IR Lo of SOgo* r
and IR lu,t, of Ug2. Such an operator will be

called hereafter as an irreducible operator and
designated by a had. IR lu,o also appears only

once in Lp According to the Racah lemma, the

Clebsch-Gordan coefficient for the group SOro*r
can be factorized as

1=re ) (KvlolKr+Kzy' \XKr +Kzy' lo' lKr +Kzy")(rKr +Kzy" lo" lKvl
w'y"

= (oxxrokroir*f + (oKKzokzokl()K + (oKKok{&#l* + (oKrr,oK{p;.glK, (4)

(o),/ = (fi) 
-'?

L:" ^) ru,:"] 
:f ^";IF :r;]

Here the first multiplier is
coefficient for the group Ue,

(6)
the Clebsch-Gordan
and the second one

is the unitary scalar coefficient independent of
additional labels of the basic states a and P.

When averaging over a, the Clebsch-Gordan
coefficient does not vanish only at v = lt - F : A.

In this special case, the unitary scalar coefficient
has the following simple algebraic expression in
terms of binomial coefficients:

I i: il: r+> .z)q(?) '.,) 
.')

(7)



The reduced matrix element may be etrpressed via
the average of the operator with respect to the
vacuum state with N = 0, and the average

(6P'l* is presented in the form I1l

L57

transition operator usually approximated by the

C-oulomb interaction operator Hc:

DKK, = 6**,, HE*, : frE*,.

For the configuration with several open shells
(subshells), the averaging is accomplished indepen-
dently in the space of each shell (subshell).

In order to expand the physical operator O
in terms of irreducible operators 6p, the following
operator C is constructed:

where of and a are the electron creation and
annihilation operators. The irreducible operaror

$n is an eigenoperator of C:

cOP : pAP

The operator of the Coulomb interaction between
electrons acting within the single-configuration
space is expanded into the scalar psft, equal to
the average energ/ of configuration E(K), and the
nvo-electron part obtained by subtracting the
average energy from the operator:

frE = Hc -E1r1.

(oo,)* =i .4q8-'0) 
0(oP>o8:0

co = +V{VI,po,'] ] + p,,pl,r] ]}, (e)

PP=
q

(8)

(10)

(l 1)

(13)

(14)

Using Eq. (9), the projection operaror pP may

be constructed, which projects out $r from O:

Only the reduction of the two-electron operator
acting benveen two configurations which differ by
the state of one electron is more complicated.
Such an operator splits into one-electron and
two-electron parrs with their expressions given in
Ref. t3l.
- The product of k irreducible operators
q . 6k may be reduced using projecrion operator
(11). considering the commumrors benveen elec-

tron creation (or) and annihilation (a) operarors,
two kinds of contractions appear: left contractions,
when the operaror al stands ro the left of the
operator a contracted with it, and right contrac-

tions, when ar stands to the right of a. onry the
terms containing contractions between all creation
and annihilation operators give a contribution to
vacuum expectation. Finally, the result is given by

(616r. . .61r)N =

where p is the number of contractions in each
term of the average (number of pairs of creation
and annihilation operators in the averaged
operators), t is the number of left contractions,

and frf is the vacuum expecration in which all
creation and annihilation operators are contracted
arnong themselves.

If the operarors act on the srates of different
shells or subshells, the numbers pi and ti are
determined for every space independently, and the

'whole average is obtained as product of the
averages in all spa@s.

The creation and annihilation operators must
be contracted in all possible ways (except of
contractions between 0f and a in the same
operator Ob since they have already been taken
into account when reducing the operators O). The
problem of finding all possible conrraction schemes
is considerably simplified by using special summa-
tion diagrams.

Elrpansions for the general one- and two-elec-
tron operators in terms of irreducible parts are
given in Refs. [1,8] and for particular operators
of atomic quantities they are given in Ref. [3J.
An irreducible ong-electron operator acting in the
space of a single configuration is obtained by
excluding its average from the operator. The
average of the spin-orbit interaction operator

Hto vanishes. Therefore, this operator itself is
irreducible:

Hto : ftto. (12)

Scalar one-electron operators, such as kinetic
energf and the Coulomb interaction of electrons
with a nucleus in the nonrelativistic approximation
or the Dirac Hamiltonian in the relativistic
single-configuration approximation, hzy be sirnply
taken out from the average, because their matrix
elements are term-independent. On the other hand,
such operators acting between two configurations
K, K' must be treated as irreducible one-electron
traceless operators. The same holds for the
one-electron radiative transition operator D in the
dipole approximation or the nvo-electron Auger

F) 
-' ''"gt(r --l6Y' (1s)
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3. Diagramnatic method for linding exPressions

of the averages

In the second quantization rePresentation,
one- and two-electron operators take the following
form:

,\F=

AG=

o!,oE(r lfl f ),

nEE,

(16)

(r7)

Here the Greek letters stand for the sets of
single-electron quantum numbers. In the LS
coupling, y = f,rlnffiupn, where mv is the projection

of orbital momentum and Fv is the projection of

spin momentum. The last multiplier on the right
side is the one- or two-electron matrix element-

Though the validity of the Pauli principle is

ensured by anticommutation Properties of the

operators at and a, the two-electron matrix
element is nevertheless defined with respect to the

antisymmetric wave functions

. l|lrr ) (" Irz ) I

UElr{zl : :l= ftl ,r,',, Gt'r)l (r8)

in order to simpliff properties of the diagrams.

Since only nvo-electron matrix elements with
respect to antisymmetric wave functions are used

in this paper, the superscript a will be omitted
in all formulae below.

The one-electron operator is rePresented by a

vertex (dot), the nvo-electron oPerator by two

vertises arranged in turn (Fig. 1). The oPerators

A

<Jn> --.

A

<G> <

ov(

oo
v( €n

o

<FF...eF> d o o

:"
o

Fig. 1. Graphical representation of one-electron (16)' two-elec-

tron operator (17) as well as of a product of serreral operatons

in the average

Fig. 2. One of the diagrams fol 
^t["^ 

average of the product
o[ four two-electron operators (GGGG,

in the diagram are displayed from the bottom up

to the top, corresponding to their arrangement in
the average from the left to the right. Each
contraction is shown as a directed line, going by

convention frorn a to ot (Fig. 2). Since the
contractions within the same irreducible operator
are excluded, the diagram contains no horizontal
lines or the lines beginning and ending at the
same vertex. The left contraction is represented
by a downward line, and the right one by an

upward line. The second single-electron state
indicated beside the verte)q from which the line
begins, must coincide with the first state at the
vertex, oD which this line ends.

Because all operators in the average must be

contracted, all vertices in the diagram are linked
by one or several closed loops (each vertex belongs
to only one loop, all arrows in the loop have

the same direction), and the summation diagram
is always closed. The relation between two-electron
matrix elements with respect to antisymmetric wave

functions

UEt 0teql : G,t itqe>

p\

\v
"t

1

4

trt

0
qt
9u

0
o9

allows one to exclude contractions between vertices
of different columns, thus only vertices of the
same column must be linked together.

One diagram represents one possible distribu-
tion of contractions, so the average with respect

to the configuration K = r{{' . ..nqqt or n{i{t
. . . nqtoil t is expressed by the following sum:

(1e)

(20)(616r. . .60f =
diagr

where summation is accomplished over all non-
equivalent diagrams. Noi"g, is the N-multiplier
containing entire dependence on the number of
electrons in the shells:

TM



Noi.g. : (- l)u*t ,u,8'(l;;
-pi\
- ,r)

- ti * lXOi - N,)(Ai - N, - L) . . . (Ai - N, - pi* ti- 1)

A;(Qi - 1)...(Qi - p;+ t)
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(ti =Nr), 
(2r)= (- t)o*t

N,(N, - 1.)...(Ni
n
i

where t; is the number of left contractions
(t :1D, pi is the total number of contractions

in the space of the i-th shell (subshell), h is the
number of loops in the diagram. The index i runs
over all shells and/or subshells acted on by the
operators. Since the averaging is performed
independently in the space of each shell or
subshell, some of the shells may be treated within
LS coupling while the others are divided into
subshells. According to Eq. (2I), the multiplier
N, (N, - 1) . . . (Nt - ti * 1) in the numerator corre-

sponds to ti left contractions, and the multiplier
(A; - ry(Ai - N, - 1). ..(Qi - N, - Pi* ti - 1) to
pi - ti right contractions.

It should be noted that for avoiding
uncertainties of the type 0 divided by 0 in
Eq. (21), the multipliers in the numerator must
be canceled with the identical multipliers in the
denominator for particular N, before speciSing
quantum numbers 11.

The minimal sum Mai^g, is the sum over

all one-electron or two-electron matrix elements
cpntaine{ in the product of operators./\ /,\ /,\,'
OtOz. . . Ok in the second quantization form, The

additional multiplier 2-u, where u is the number
of equal bra and ket two-electron states (e. g.

Qg I and lrp D, also appears. For example, the
minimal sum corresponding to the diagram in
Fig. 2 has the following expression:

z-2> gut 0t vpXvpt it E, l$rttf^tpt,lb1lf^ltq).
r*pEqEp

(22)

The numbers of the left and the right contractions
may be simply determined from the minimal sum.
It is necess ary to consider every one-electron ket
state, and if the same bra state stands to the
left, then it is a left contraction, if to the right,
then it is a right contraction. For example,
according to expression (22), the contractions
corresponding to the states aLq are left
contractions and the ones corresponding to
vgkE are right contractions.

All nonequivalent diagrams for the average of
the product of k one-electron operators may be
constructed linking them by the 1,2,.. .,{kn} loops
in all possible ways, where {kn} is an integer

part of kn. Such diagrams for k - 2,3,4 are
presented in Fig. 3 and for k : 5 in Fig. 4.

All nonequivalent diagrams for the product
of several nvo-electron operators or two-electron
and one-electron operators are obtained in the
following way. First, all combinations of nonequiv-
alent diagrams for the first and the second
columns are constructed (vertices of one-electron
operators are placed in both possible positions).
Then, existing equivalent diagrams should be
excluded from the obtained set. The diagrams are
equivalent, if they can be transformed one to
another by a mirror reflection with respect to a

Fig. 3. Nonequivalent diagrams for the averages of the producs
of two (1), three (2, 3), and four (+12) one-electron operators
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of five one -electron operators 1Offi7.

may be obtained by cyclic permutation of the
single-electron states in the minimal sum. Tlvo
single-electron states are permuted in any two-elec-
tron state, for example, states U in the minimal
sum

160

Fig.4. Nonequivalent diagrams for the average of the product

vertical line between columns or by deformation

of the diagram without changing positions of
vertices (Fig. 5). The rest equivalent diagraffiS,

corresponding to the symmetry property of matrix

elements

UEt 0t E t) = - QEI Al /tE; = - G"l Al eq), Q3)
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Fig. 5. Some of the equivalent diagrams

corresponding to the diagram I in Fig. 6, then
I is permuted with v in the third matrix element
and so otr, generally, until reaching the initial
sute e. When during such a permuntion thg state
v in the one-electron matrix element P I frc> is

reached, the order of permutation is simply
transmitted to the next state e of this matrix
element. When the ryclic pennutation involves atl
single-electron states of the minimal sum except
equal nvo-electron bra and ket states, the diagram
is transformed into itself and, consequently, has
no equivalent diagrams in the obtained set.
Otherwise, if the permutation involves only some
of the states, it produces an equivalent diagram
which must be excluded from the set.

All nonequivalent diagrams for the averages of
the product of two and three two-electron
operators are shown in Fig. 7, and of some
products of one-electron and two-electron operators
in Fig. 8. The number of diagrams and minimal
sums increases rapidly with the number of
operators (Table L). The number of minimal sums
(principal diagrams) is smaller and increases slower

00 ilil (( il(

161

Fig. 7. Nonequivalent diagrams for rhe averages GG) (t) and

<GGG; e-4)

than the nurnber of nonequivalent diagrarns
becaue the same minimal sum corresponds to ?
certain group of diagrams that may be transformed
to each other by a vertical permutation of vertices
corresponding to various operators (for example,
the diagrams L-24 and 2544 in Fig. 4). The
contribution of the whole such group of diagrams
may be presented in terms of permutation
operators acting on the minimal sum. One
arbitrarily chosen diagram in the group is called
a principal diagram and the arrangemenr of matrix
elements in the minimal sum @rresponding to the
principal diagram is called to be the normal order
(the matrix elements obtain ordinal numbers
corresponding to their place in this minimal sum
Mi= Mi$rLr"',tr)).

The arrangement of matrix elements corre-
sponding to other diagrams of this group is
obtained by acting on the matrix elements in the
normal order with the permutation operator:

(2s)

Table l. Number of noneguivalent diagrams (D) and minimal
sums (M) for the averages of the products of one- and
two-electron operators

4P

,h

fl
v(

a,tr I

2

Fig. 6. Examples of diagrams, whose equivalency follorps from
the cyclic permutation of operators
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0
1

for the averages €rc) (1), (FFGG ) (2-12), and

12

15

Fig. 8. Nonequivalent diagrams
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The order of the matrix elements in the minimal
sum is significant for obtaining the N-multiplier.
When several permutation operators act on the

p(2t34)p(1324)M(t234) = (? t3 i) (l )3
The principle diagrams and the expressions for

the averages of the products of three, four and

five one- and two-electron oPerators are given in

Appendix.
While speci$ing the averages for a given

configuration, the operators in the average turn
into operators acting within the definite shell or

benveen shells (transition operator) or into the

surns of such operators (Hamiltonian). Thus, the

averages of operators acting on definite shells are

in practice considered. Nevertheless, summation

over quantum numbers of shells or subshells

same minimal sum, the matrix elements are
supposed to have fixed numbers corresponding to
their normal order:

= P(23t4)M(t234) - M(2314). (26)

sometimes remains in the average because matrix
elements with respect to antisymmetric wave

functions for the two-electron operator in the
second quantization form of Eq. (I7) are used.

For example, let us consider the contribution of
tlle diagram in Fig. 9 to the average
(GrrGrrGrrGnl, where G' is the irreducible

two-electron operator corresponding to interaction

between electrons of the shells nrljvt and "ilY, in

the configuration K, The minimal sum takes the

form

(0(0
17

aOffi) (1!18)
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(bl 0t ver\il it eql(eqGb,lbel 0lrf ).
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Taking out quantum numbers nilr ftom the sets

I, e), . . . and performing summation over nrli, we

rewrite expression (27) in the form

single-electron moments in the minimal sum may
be accomplished algebraically or graphically (using

if. nr/u = f,rl, - "{8, 
: nqlq - nl,

z(2tt+I)(Uz+ 1)

(27)

kttpg

"Eeq

(tlt* | Q prutp'1 ltraS 1 Q 1 trgt"rt I ($tzrt 1 i 1 
trptyn'1 lt rptp I Q 1 t7t4l

+ (t lt p I ? V r"tre't U ytzE 1 ? V zgt fl I U tt fl | g I t 9 LlD | ( t f I zs I s I t fl zE I

+ (l!,t p 1 f 1 
t y t re'1 I t yt rE I i I t r}t zrt I I t $t 2a I Q 1 

t p t r, 7 I r p t re 1 Q 1 
t rtt rE 7

+ (t],tpliltytreyltyt$l?lt*tsl7*tft1i1tptr,7ltptrs1|1t7rrgl, (2s)

Due to relations (19) and (23), the all four topological equivalence of the angular momentum

terns in expression 
'(2b) are equal, but the and summarion diagrams) [3]. The transformation

Ar-multiplien differ for 
-teims 

1,2 and 3,4. Thus, of minimal sun$ to the coupled-momenta basis

summation over quantum numbers nili must be considerably simplifies their calculation, because in

taken our from the, minimal sum. In Refs. [3,61, lltj 91it the matrix elements of the Hamiltonian

a special operator i ,""s introduced, which laed are independent of the projections of angular

on the minimal sum and produced all possible momenta'

summations over the quantum numbers oi shells Transforming the matrix element of the

or subshells before the determination of N-multi- irreducible operator of the Coulomb interaction

plier. between electrons to the LS coupling scheme, the

The summation over the projections of following quantity is obtained:

where Greek letters denote the sets of the

projections miryi only.

[t+

lz

lL

(n{ if nJ, = f,rl, = nlly nElE = nr/rt

(

,t,gtr,,,,

k>0

x(,

s I it lnrl,,ttr/*s')

C(k) W>2 Fk(nt,nt),

,nrtr(nr/StglEL

#ro] t''

.N;lE ttu

(?J *

: V*i,ntr,r,t,n,,t,t : l*;i",n{

(-lr.lp,[,-"{" 

"'i+

1

-1)';*'ntl';

ilc() Wzf d

pI

\v

C(k) l[r ) hll}&) VzlFk (n{1, nztz) + >
k

L]
r|(tr lt

r nilz),

F','{l'ti\.
n212, (2e)

where I* and d 
^re 

radial integrals of the

Coulomb interaction, frc is the irreducible (trace-
less) Coulomb interaction operator, Nn"l,,nrl, is the

normalization multiplier

ft, if nJn: ngtE,

Nn,tn,nEIE = 
\r,, if nJu * nglg.

Fig. 9, Diagram for the average

contribution of which the summation
of shells remains

A /\ ,\ A
(GnGnGy2Gtz'1, in the

over the quantum numbers

(30)

It must be excluded from the matrix element
because of the same normalization condition used
for equivalent and nonequivalent electrons in
Eq. (18). The matrix elements of the irreducible
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operators of the spin-orbit. interaction and the

radiative dipole tt"nrition coincide with their usual

expressions.
The group-diagrammatic method described

above has Ueen implemented in a g€neral computer

code which deriveJ the formulae for the averages

in terms of minimal sums and performs their

calculation. A special code for the transformation

of the minirnal sums to the coupled-momenta basis

has been written bY V- Jonauskas'

4. Generel expression for the sverage of the

product of one-electron operators. Averages of

ipin-orbit intcraction, projection of the angular

monrentum, snd standald unit operators

The group diagrammatic summation method

was appliJO f6r finding explicit exPressions of the

main global characteristics of energy levels,

emission and Auger spectra lffil- The general

expression for the average of the product of

one-electron oPerators was obtained in Ref' tU
and simplified using rhe diagrammatic merhod in

Ref. t3l. Here *e ]resent .also some applications

of this expression for physical operators'

The ci.gram for the average of the product

of k one-eleltron operators consists of one or

several loops (Figs. 3 and 4). Irt us designate .the
number or lodpJ h and the number of vertices

in the i-th looP, or its length, bY kY

The number of all possible ways to link ki

(ft "'fo)" :

x d(rr +... + tlrrt)d(kr + " '*ks1,k)Brr"'Bo^'(34)

For fiilo, three, and four operators acting on

the electrons of the single shell or subshell the

average takes the following simple form:

where enl is the spin-orbit parameter'

The number of levels of configuration K with

vertices by one loop with the t; (1 S ti S ki - 1)

downward segments is equal to the number of

permutations bf ki - I elements during which the

element with the larger number is replaced t;

times by the element with the smaller number

and is bqual to the Euler number Ao,,ri-l [1J'

ti-l
Aou ti-l =

Pi:o

Kf{2"*n = ffi

1)e'-'[* -f,-')
(31)

The number of ways to link k vertices by the

loops of length k1, k2, . . . , kh can be exPressed as

1 
, 

(32)

v(2) Iv(3)! . . . v({kL})l

where v(i) is the number of loops of the same

length nnfing up i vertices, {k2} is the integer

part of the number k2-
The minimal sum Bk may be factorized into

h parts corresponding to the separate loops:

Bk = BoPor"'Blkh (33)

Consequently, the average of the product of k
one-electron operators acting on the electrons of

the same shell or subshell with the number of

states CJ and the number of electrons N is

expressed as

F) 
-"8,2^(-t)h.'(1,:f -l Kf'k^

(Zskr...=k^sk)

kft &r:1

11= 1 th:L

(fiffi/r = 83, (36)

trfl = ffiBz' (3s)
(ffF^ON -- I(o-*

C,(Ct-lxs,-zxa-3)

" {fo - N- lxo -N -z)-4(N- 1Xo - N- 1 ) + (N- 1XN-2)] Bq*3(N- lXO-N -DBll- Q7)

Inthecaseofspin-orbitinteraction,theminimalsumElisexpressedas

(zj + t)(ntjlh'o lnrif = 1-k*r 4t + t) 
[, 

k-r + (-l)k (t + l)k-t] *,' (38)
B'f =

j

the given total momenturn
lines of radiative diPole

J and the number
transitions between

of
all

d&,,



levels of two configurations can be approximately calculated

N(K4=ffi{'.#1" E.H} *'

N(,(, K') = ffil' - *: ry(* - #,)]

using the

Fq

formulae t9l
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(3e)

Here g(A') is the statistical weight of configur-
ation K; IJI = 2I + I and dz: Ioz(E + a2(K')12,
d4 = lo{f) + aa(K')ln, where az(A, aq(Iq are the

moments of the distribution of eigenvalues of the

operator 41) or its averages:

ap=
s(I{)

= 6t 4t))*.
k op€rators

(41)
For this operator the minimal sum Bk is expressed
as

Bk:
im i m:-i

The minimal sums Bz and Bq, which appear
in Eq. (41), have the following form for the shell

lN:

Bz : Ir"+ 1) (P + u+ 3), (43)

84 : h(u + r)(sf + eef + 152J2 + tHt + r5),

(40)

84 = #?<ri *t)4-Lo(?i+r)2*rJ. (46)

Various physical operators or effective opera-
tors are often expressed in tenns of standard unit

operators U{k), v4t*') @ is the rank in the orbital
space, and k' in the spin space), for which the
single electron reduced matrix elements are defined
AS

(n/ ll u(k) lln/) = {ttk1

(nts llv(tr') lln/s ) : Utk\ liik'!.

(47)

(48)

and for the subshell Jil,

Bz:W'

(44)

(4s)

Here {jJi) is the triangle delta-function, which

requires the triangle relations for the quantum
numbers jy jz, and jg to be satisfied.

The averages of the operators U(k) or yQe')

do not vanish only at k = 0 or k = k' - 0,
therefore the irreducible one-electron operators

acting on the electrons of the shell f are given

t?k') : y(t&') - d(k,g) 6(k,,0) #. (50)

The minimal sums of the product of operators
y(l*') are expressed in terms of the sum of the
Clebsch-Gordan coefficients:

kr /l
Qt ^4

(4e)

(s1)

Bt=

t21l1n kl tn1
Ft-lLu, ql r,)'

nw

U,s] 
-ngkrltsski). ., {ttk,}tss(}

1tr;:: L

x ftn'rlTXi'A f:71

) . . . (^,-ttt rrlrf::rrki-;) lm,p,l @,tr,trf,,l! t

,r,::,)V,X::l|[,?,_i^',_,)V,

mtF)
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The tensor operators with nonzero ranks in summation of the clebsch-Gordan coefficients

the orbital and slin spaces may be joined in arising ftom the minimal sum and tensorial

scalar or tensorial 
-products. Let us suppose that product, we obtain for the averages of two and

the final rank in both spaces is 0. Performing three operators

K?@,).fl,o,\)"=ffiUkt{iik,}Il-d(k,0)6(k,,0)l, (s2)

( 
[["t-,-r 

* ?rrnf(&'tt x **\t*'),n : - ffif; r;rtl:', k :AI

* k"+ 1-rO - (-r;&r+4*4(,v- tl] [t -6(kr,0)6(ki,ol] [, - ,1or,o,7u14ol] [t -d(ft3,o)d(ki,o1].1sr;

Using the relations (a9) and (50), the averages of the standard unit operators may be found, for

example,

(s4)

t[[,,<-'l"*4'"d9(0)P=ffi|r;rlr/{"+2-IV)[ta*r-/f)-7-t7kf4+40v-1)

+(4t+2)(N-ry(a1rr,0)+d(&2,0)+d(q,oD] *d(kl,0)6(k20)6(t3,0X4/+ 42W-t;1t-r1). (55)

TWo- and three-electron operators may be expressed in terms of the products of one-electron

operatont:

(56)

-*{? ? ?l[(u<-'r.rl-'r) 
+1-rve,**z+*'(u{D,t@)* (u<*'r',1-t) - #(r+1-r;&'*-'.*')]. (5?)

From Eqs. (56) and (57), the expressions fOllow for the averages of two- and three-electron

operatoN with the complex inner structure:

(>0f4.,j*,))"=ffi[t+l+z)ot*,0)d(&,,0).1]{ttk}{',k'},
i<i

(,e [[,ft " "fl."' "'f;"] 
(o)Yv 

= Weft rf 
?l

, {r * 1-1;kr+&z+& - gt +21[06r,0) + d(k" 0) + d(ft3,0)] + d(kr, 0)6(k2,0)d(k3, o'11u + z1tl. (se)

A four-electron operator may have a various tensorial structure. The following effective operator

often appears:

i<j \

,&o[ [,f-" 
xufk)] 

nu x$'s)] lo' 
: 2[ [d*" " do'] 'ou x t*'l:"

(58)

,o;.,(,f*o 
'"!q)]"l?,t') = +[(*" u 'r) (uxt'r 

"@)- 
4(-t;tr+kz ) f; ? N 

x



x 
Fo,'o,?.0

These formulae may be rseful when introducing
mean characteristics of atomic quantities which
correspond to the averages of some effective
operators,

Conclusions

The general group-diagrammatic summation
method allows summation of atomic quantities to
be performed over all many-electron quantum
numbers in either nonrelativistic or relativistic,
single-configuration or CI approximations. The only
assumption made is that the radial orbitals are
term-independent. The simple rules of this method

Appendix

Expressions for the averages of the products
of onG- and two-electnon operators

Here we pr"r"n, expressions for the averages
of the products of three, four, and five two-elec-
tron operators as well as of two-electron and
one-eleCtron operators (except (f;nA ) which is
described by only one diagram). The average of
the product of one-electron operators is expressed
by the explicit formula (34). The principal diagrams
corresponding to the minimal sums in the normal
form are given in Figs. L0-ll. In all formulae
below, P(i . . . q) is the permutation operator (25),
its abbreviated notation P(ij) means that only the
i-th and the j-th matrix elements are interchanged.
n(t . . . q) denotes the sum of the operators of all
possible permutations of i...q matrix elements in
the minimal sum on which the operator is acting.
The operator t produces summation over quantum
numbers nili or nilii (see the comment below

Eq. (28)). Nai"g, is the N-multiplier defined by

Eq, (2L),
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are convenient for deriving the expressions using
a computer. This gives the possibility to obtain
explicit expressions for the main global character-
istics of the energy level, emission and Auger
spectra, for the mean characteristics of configura-
tion interaction in atoms and other quantities,
which can be expre,ssed by the averages of the
producS of operators.
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([,f-,",i*{o',f;,) +(-1rr{? oi;}; 
(,,o,,") ]

(60)

Its average is expressed as

\e.,V[o,"fr') VY' "P)r" = *ffi IW- 1-r;e'+b f,', LI * ffi
- (4r -z)16(kr,o')+6(krolf - #[r- 1-r;t,**l [a{*r, o)+6(kz0)l+d(kl, ol6(kz,o)(4t-z)(4t+rllt*rrt*rr.

(61)
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6frG>* = No,,r.Ct [t + p(12)] 
[t * 

p(34)] Er* Ez*

the average 1ffi6 y

GGG>K = No,.rrf t[t + p(tz)lDl + Dz] (A 1)

A'.z\,.zt..A. l/

(FFFG)^ : Na,^sJr,l(L23)Mr (2)

(A3)

(A4)

(A s)

00 08 00
)

I

F,F,F.,

[t * P(34)] @E * Ea+ Es)]

GGGCf = No,^rf lne34)(rr * Fz+ Fg + Fq) + p(rz)ne34)Fz

'\^,\,^A-A-A V
(fiEEFG)

- A.Az\.A A' V
(FFFGG) = rvo"e.f{tre23)[t+ p(45)l(rr + h + 14 + 16 + rB)

+[1 +P(13) +P(23)][1 +P(4s)llz+ [1 + P(Lz)lIs + [1 + P(tz)+p(23)ll1+egsytrl (A6)

<ffiGG'f = ,vo"r'i{l +P(12)ln(345)(Hr+ Hz+ H5+ Hu+ H, + Hs+ Hs+ Hn+ Hrz)

+ 1P (r2) + p(14)l 
Ip (23) + p (24) + p Q )l\ + Ip (23) + p (24) + p(34)l (rs + rd)

= rvo"rf {tr(l 234)sr + [t +p( 12)l {Ip (23) + p (24) +p(34)ls2 + n(84)s3} 
}
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averase < 6666 I

+[1 +p(34)](H3 +Hrd +H4 + n(34s)(f40 +HB +HL4 +H$ +Hn) + [1 +p(34) +r1rsypr.]
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GGCGG{ = ,vo"rf{n e34s)(cr + Gro) + rr(12345)(G2+ Gs + ce) + p(14)t1 + p(24)ln(34s)c3

+ [p(13) + P(1D]n(2345XG3 + G7 + G8 + c14) + p(23)lt + p(13) + p(14)ln(34s)G4

+ n(124X1 + P(34) + P(4s)lG4 + P(13)II(234')(G4 +G6) + P(23)lt + P(13) +P(1s)ln(34s)G6

+ n(12sx1 + P(3s) + p(4s)lc6 + [r + PQ4)lrr(34s)(G7 + G:'4)

+ P(rz)It + p(24)ln(34s)G8 + [p(15) + p(24)]n(34s)(cr1 + Gn)+ [1 + p(45)JG12

+ P(23)P(14X1 + P(35) + P(4s\lc:2+ P(24YQ3)[1 + P(3s) + P(4s)l(cr z+ G:.f,)

+ [1 + P(13) + P(t4) + P(ls) + P(23) + P(24) + p(zs)lcrg] (A 8)

If one-electron and two-electron operators are
ananged in the average in another than in the
formulae above order such average is described by
the same minimal sums. Its diagrams can be
obtained by interchanging the corresponding
vertises and its expression contains an additional
permutation operator of matrix elements of
different operators.
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