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A general group-diagrammatic summation method for obtaining explicit
expressions for the averages of the products of operators is described. It is
based on the properties of irreducible representations of continuous groups

and application of special summation diagrams.

The simple rules formulated

are convenient for implementation of this method in a computer code for

automatic derivation of expressions.

The formulae for the averages of the

products of some physical operators (spin-orbit interaction, projection of the
total momentum, unit standard operators) are presented.

1. Introduction

Various mean characteristics of atoms— the
averages of Hamiltonian or effective operators, the
total line strengths, the main measures of
configuration interaction (CI) in the electronic
shells—are expressed by the sums over all
many-electron quantum numbers. Such sums also
appear in the formulae for global characteristics
(average energy, variance, skewness, excess, and
others) of the energy level spectra, including all
levels of one configuration (configuration complex),
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Some of the configurations Ki,K,,...
they all may be the same. The average is
independent of the coupling scheme; some pure

coupling is commonly used.
From the definition (1), such symmetry prop-

erties for the average follow:
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and of the characteristic emission or Auger
spectra, corresponding to the transitions between
all levels of two configurations (configuration
complexes). All these quantities may be expressed
in terms of averages of a product of operators.

Let us take k operators O1,0,,...,0,_1,0;
in the second quantization representation acting
in the space of one configuration or between two
configurations. The average of the product of
these operators with respect to configuration K;
is defined as follows:
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where O;r is the
to O;.

The averages may also be defined in the CI

approximation. Then all (or some) configurations
K; in Eq. (1) are replaced by configuration com-

= K“ + Kiz +

operator Hermitian adjoint

plexes K; .., and y; has a meaning
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of the state of the complex; the summation in
the average is carried out over all states of the
complexes. The averages in this approximation may
be expressed in terms of the averages (1). This

is illustrated by the following example (K; =K.
K; =K; =K, + Ky):
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where the subscripts of the operators in the only once for the given IR of Rjzg,,. This

averages on the right side of equality indicate the
spaces of configurations in which or between which
the operator is acting.

An explicit or algebraic expression for the
average may be obtained under the assumption
that all radial orbitals are term-independent — then
the summations over the spin-angular parts of
matrix elements can be performed algebraically.
However, the matrix elements contain fractional
parentage coefficients, which have no standard
expressions, and their sums together with the 3nj
coefficients are unknown.

In Refs. [1,2], a general group theory method
for deriving averages of many-fermion systems was
proposed and special summation diagrams sug-
gested. The diagrammatic form of this method was
elaborated [3,4] and applied to electronic shells
of atoms [5-7]. The aim of this paper is 10
present a comprehensive review of this method
and to show some applications to physical
operators.

2. Dependence of averages on the number of
electrons in shells or subshells

The general method for deriving explicit
expressions for the averages of operators may be
formulated using properties of the irreducible
representations (IR) of higher continuous groups:
the special orthogonal group SO3q.; and its

unitary subgroup Ug, where Q is the number of
single-electron states in a shell (4/ +2) or subshell

(2 +1). The states of all nl™  shells (or nle
subshells) with the same quantum numbers nl (n/))
and 0<N<Q belong to the same IR of
SO30.+1, and the states of a single shell or subshell

with the given number of electrons N form a
basis of the same IR of Ug. These groups are

not convenient for classification of the states
because of the very large number of repecating
terms, but this is not so important when averaging
over all the states. On the other hand, it is very
important that every IR of Ug appears once and

provides the opportunity to determine explicitly
the dependence of the average on the number ot
electrons N. For the configuration with one open
shell (subshell), the average of the operator O
reads

-1
o) = (,‘3) S (adyalOladya),  (O)

a
where A is spinor IR of §O3q.;, dy is IR of
Uy contained in A and « labels the states in
on- The superscript of
only the number
configuration K.

For applying the Wigner-Eckart theorem to

the matrix element in Eq. (5), the operator O
must transform under some IR A, of SO;q4,
and IR 4, , of Ug Such an operator will be
called hereafter as an irreducible operator and
designated by a had. IR A,,, P also appears only
once in Ay According to the Racah lemma, the
Clebsch-Gordan coefficient for the group SO3q.,
can be factorized as

indicates
instead of

the average
of electrons N

A A, A Sy A, On][A Ay A
(6)

Here the first multiplier is the Clebsch-Gordan
coefficient for the group Ug, and the second one

is the wunitary scalar coefficient independent of
additional labels of the basic states a and f.

When averaging over «, the Clebsch-Gordan
coefficient does not vanish only at v=u=8=0.
In this special case, the unitary scalar coefficient
has the following simple algebraic expression in
terms of binomial coefficients:
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The reduced matrix element may be expressed via
the average of the operator with respect to the

vacuum state with N =0, and the average
(6P is presented in the form [1]
Q -1
~ Q N o
o = ¥ <—2)"(q) (”)( )<0P>°. (8)
5 q) \q

For the configuration with several open shells
(subshells), the averaging is accomplished indepen-
dently in the space of each shell (subshell).

In order to expand the physical operator O

Pal .
in terms of irreducible operators O?, the following
operator C is constructed:

o - 33 (afel] brlsel) o

where a' and a are the electron creation and
annihilation operators. The irreducible operator
OF is an eigenoperator of C:

co? = pOP. (10)

Using Eq. (9), the projection operator PP may
be constructed, which projects out OF from O:

vezer@y w

Expansions for the general one- and two-elec-
tron operators in terms of irreducible parts are
given in Refs. [1,8] and for particular operators
of atomic quantities they are given in Ref [3].
An irreducible one-electron operator acting in the
space of a single configuration is obtained by
excluding its average from the operator. The
average of the spin-orbit interaction operator

H*® vanishes. Therefore, this operator itself is
irreducible:

H” = A% (12)

Scalar one-electron operators, such as kinetic
energy and the Coulomb interaction of electrons
with a nucleus in the nonrelativistic approximation
or the Dirac Hamiltonian in the relativistic
single-configuration approximation, may be simply
taken out from the average, because their matrix
elements are term-independent. On the other hand,
such operators acting between two configurations
K,K' must be treated as irreducible one-electron
traceless operators. The same holds for the
one-electron radiative transition operator D in the
dipole approximation or the two-electron Auger

‘whole average is
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transition operator usually approximated by the
Coulomb interaction operator HS

- A C _ nC
DKK: = DKKI, HKKI = HKK" (13)

The operator of the Coulomb interaction between
electrons acting within the single-configuration
space is expanded into the scalar part, equal to
the average energy of configuration E(K), and the
two-electron part obtained by subtracting the
average energy from the operator:

H¢ = H°-E®). (14)

Only the reduction of the two-electron operator
acting between two configurations which differ by
the state of one electron is more complicated.
Such an operator splits into one-electron and
two-electron parts with their expressions given in
Ref. [3].

. The product of & irreducible operators
O;...0, may be reduced using projection operator

(11). Considering the commutators between elec-

tron creation (aT) and annihilation (a) operators,
two kinds of contractions appear: left contractions,

when the operator a' stands to the left of the
operator a contracted with it, and right contrac-

tions, when a‘r stands to the right of a. Only the
terms containing contractions between all creation
and annihilation operators give a contribution to
vacuum expectation. Finally, the result is given by

A A A Q\~1 M@N o N o
(0,0,...0)" = (N) D (N_It’)D,P, (15)

t=0

where p is the number of contractions in each
term of the average (number of pairs of creation
and  annihilation operators in the averaged
operators), ¢ is the number of left contractions,
and ﬁ," is the vacuum expectation in which all
creation and annihilation operators are contracted
among themselves.

If the operators act on the states of different
shells or subshells, the numbers p; and ¢; are
determined for every space independently, and the
obtained as product of the
averages in all spaces.

The creation and annihilation operators must
be contracted in all possible ways (except of

contractions  between a" and @ in the same
operator O;, since they have already been taken

into account when reducing the operators O,). The
problem of finding all possible contraction schemes
is considerably simplified by using special summa-
tion diagrams.
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3. Diagrammatic method for finding expressions
of the averages

In the second quantization representation,
one- and two-electron operators take the following
form:

F =3 dawifle), (16)
e
& = %%ﬂ ol ala, ar (vE| £ 1n )" (17)

Here the Greek letters stand for the sets of
single-electron  quantum numbers. In the LS
coupling, v =n,l,m, u, where m, is the projection
of orbital momentum and g, is the projection of
spin momentum. The last multiplier on the right
side is the one- or two-electron matrix element.
Though the validity of the Pauli principle is
ensured by anticommutation properties of the

operators a' and a, the two-electron matrix

element is nevertheless defined with respect to the
antisymmetric wave functions

wlxy) @ixy)
V2l ey ()

in order to simplify properties of the diagrams.
Since only two-electron matrix elements with
respect to antisymmetric wave functions are used
in this paper, the superscript a will be omitted
in all formulae below.

The one-electron operator is represented by a
vertex (dot), the two-electron operator by two
vertices arranged in turn (Fig. 1). The operators

(18)

(vElxpx,) =

<G> - o o

Fig. 1. Graphical representation of one-electron (16), two-elec-
tron operator (17) as well as of a product of several operators
in the average
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Fig. 2. One of the diagrams for the average of the product
of four two-electron operators (GGGG )

in the diagram are displayed from the bottom up
to the top, corresponding to their arrangement in
the average from the left to the right. Each
contraction is shown as a directed line, going by

convention from a to a' (Fig. 2). Since the
contractions within the same irreducible operator
are excluded, the diagram contains no horizontal
lines or the lines beginning and ending at the
same vertex. The left contraction is represented
by a downward line, and the right one by an
upward line. The second single-electron state
indicated beside the vertex, from which the line
begins, must coincide with the first state at the
vertex, on which this line ends.

Because all operators in the average must be
contracted, all vertices in the diagram are linked
by one or several closed loops (each vertex belongs
to only one loop, all arrows in the loop have
the same direction), and the summation diagram
is always closed. The relation between two-electron
matrix elements with respect to antisymmetric wave
functions

(VEIZIEn) = (Eviglnt) (19)

allows one to exclude contractions between vertices
of different columns, thus only vertices of the
same column must be linked together.

One diagram represents one possible distribu-
tion of contractions, so the average with respect
to the configuration KEnlllNl...nqléVq or nllljf]l

...nqlqj,?lq is expressed by the following sum:

AN ~ K
<0102 c Ok) = E Ndiangdiagr ’ (20)
diagr

where summation is accomplished over all non-

equivalent diagrams. Ny, 1is the N-multiplier

containing entire dependence on the number of
electrons in the shells:
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(@ -=N;—pi+5;-1) (21)

(_1)h+l H

i

where ¢ is the number of left contractions
(t=31), p; is the total number of contractions

in the space of the i-th shell (subshell), h is the
number of loops in the diagram. The index i runs
over all shells and/or subshells acted on by the
operators. Since the averaging is performed
independently in the space of each shell or
subshell, some of the shells may be treated within
LS coupling while the others are divided into
subshells. According to Eq. (21), the multiplier
N;(N;=1)...(N; —=t; + 1) in the numerator corre-
sponds to ¢ left contractions, and the multiplier
(Q-N)Q—-N;—-1)...(-N;—-p;+;-1) 1o
p; —; right contractions.

It should be noted that for avoiding
uncertainties of the type 0 divided by 0 in
Eq. (21), the multipliers in the numerator must
be canceled with the identical multipliers in the
denominator for particular N; before specifying
quantum numbers /.

The minimal sum Mg, is the sum over

all one-electron or two-electron matrix elements
contained in the product of operators
0,0,...0; in the second quantization form. The

additional multiplier 27", where v is the number
of equal bra and ket two-electron states (e.g.
(vp| and |vp )), also appears. For example, the
minimal sum corresponding to the diagram in

Fig. 2 has the following expression:

272 (ol glve Yvp| g 18w Xon | 8 10E XpE| g 1A ).

Awvelbnép
(22)

The numbers of the left and the right contractions
may be simply determined from the minimal sum.
It is necessary to consider every one-electron ket
state, and if the same bra state stands to the
left, then it is a left contraction, if to the right,
then it is a right contraction. For example,
according to expression (22), the contractions
corresponding to the states wly are left
contractions and the ones corresponding to
vplpE are right contractions.

All nonequivalent diagrams for the average of
the product of k one-electron operators may be
constructed linking them by the 1,2,...,{k/2} loops
in all possible ways, where {k/2} is an integer

QQ-1)...

Q-pi+1) ;= No)

part of k/2. Such diagrams for k=2,3,4 are
presented in Fig.3 and for k=35 in Fig 4.

All nonequivalent diagrams for the product
of several two-electron operators or two-electron
and one-electron operators are obtained in the
following way. First, all combinations of nonequiv-
alent diagrams for the first and the second
columns are constructed (vertices of one-electron
operators are placed in both possible positions).
Then, existing equivalent diagrams should be
excluded from the obtained set. The diagrams are
equivalent, if they can be transformed one to
another by a mirror reflection with respect to a

o 1

1

¢
)
»
:

Fig. 3. Nonequivalent diagrams for the averages of the products
of two (1), three (2,3), and four (4-12) one-electron operators
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Fig. 4. Nonequivalent diagrams for the average of the product of five one-electron operators (FFFFF).

vertical line between columns or by deformation
of the diagram without changing positions of
vertices (Fig.5). The rest equivalent diagrams,
corresponding to the symmetry property of matrix
elements

(EIZIER) = —(EIZIE) = —(&vIglin), (23)

may be obtained by cyclic permutation of the
single-electron states in the minimal sum. Two
single-electron states are permuted in any two-elec-
tron state, for example, states A in the minimal
sum

S IfIENAIg Inw ) pw | g 1ANIflp)  (24)
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Fig. 5. Some of the equivalent diagrams

corresponding to the diagram 1 in Fig. 6, then
A is permuted with v in the third matrix element
and so on, generally, until reaching the initial
state {. When during such a permutation the state
v in the one-electron matrix element (v | f [E) is
reached, the order of permutation is simply
transmitted to the next state ¢ of this matrix
element. When the cyclic permutation involves all
single-electron states of the minimal sum except
equal two-electron bra and ket states, the diagram
is transformed into itself and, consequently, has
no equivalent diagrams in the obtained set.
Otherwise, if the permutation involves only some
of the states, it produces an equivalent diagram
which must be excluded from the set.

All nonequivalent diagrams for the averages of
the product of two and three two-electron
operators are shown in Fig. 7, and of some
products of one-electron and two-electron operators
in Fig. 8. The number of diagrams and minimal
sums increases rapidly with the number of
operators (Table 1). The number of minimal sums
(principal diagrams) is smaller and increases slower

O
0

2

Fig. 6. Examples of diagrams, whose equivalency follows from
the cyclic permutation of operators

161

oo 340 b

Fig. 7. Nonequivalent diagrams for the averages (@6) (1) and
(GGG) (2-4)

than the number of nonequivalent diagrams
because the same minimal sum corresponds to a
certain group of diagrams that may be transformed
to each other by a vertical permutation of vertices
corresponding to various operators (for example,
the diagrams 1-24 and 2544 in Fig. 4). The
contribution of the whole such group of diagrams
may be presented in terms of permutation
operators acting on the minimal sum. One
arbitrarily chosen diagram in the group is called
a principal diagram and the arrangement of matrix
elements in the minimal sum corresponding to the
principal diagram is called to be the normal order
(the matrix elements obtain ordinal numbers
corresponding to their place in this minimal sum
M;=M®1,2,...,n)).

The arrangement of matrix elements corre-
sponding to other diagrams of this group is
obtained by acting on the matrix elements in the
normal order with the permutation operator:

M@j...pq) = PGj...pg)M(12.. .k —1k). (25

Table 1. Number of nonequivalent diagrams (D) and minimal
sums (M) for the averages of the products of one- and
two-electron operators

Average | D | M Average D M
(FF) 1 | 1 |(FFFFF) 44
(GG) 1 | 1 |(FFFFG) 42
FFRy | 2 | 1 | (RGO ™8
(FREy | 1 |1 |UFCGG) a1
(&68y | 3 | 2 (GGGGG) 870 | 15
(FFFF) , |(FFFFFR) | 265 | 4
(FFFG) | |[(FFFFEG) | 320
(FF6Gy | 1 | 5 |VEEEFGG) 616 ) 24
(8668 | 22 | 6 (FFFGGG) | 1314 | 47
(FF GGGG ) 3297 93
(GGGGEG)Y| 28140 | 73
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Fig. 8. Nonequivalent diagrams for the averages (FFG) (1), (FFGG) (2-12), and (FFFG) (13-18)

The order of the matrix elements in the minimal
sum is significant for obtaining the N-multiplier.
When several permutation operators act on the

32
.
-~

1234 3

P(2134)P(1324)M(1234) = (2 b3 4) (}

The principle diagrams and the expressions for
the averages of the products of three, four and
five one- and two-electron operators are given in
Appendix.

While specifying the averages for a given
configuration, the operators in the average turn
into operators acting within the definite shell or
between shells (transition operator) or into the
sums of such operators (Hamiltonian). Thus, the
averages of operators acting on definite shells are
in practice considered. Nevertheless, summation
over quantum numbers of shells or subshells

:)M(1234) = P(2314)M(1234)

same minimal sum, the matrix elements are
supposed to have fixed numbers corresponding to
their normal order:

M(2314). (26)

sometimes remains in the average because matrix
elements with respect 0 antisymmetric wave
functions for the two-electron operator in the
second quantization form of Eq. (17) are used.
For example, let us consider the contribution of
the Adiagram in Fig. 9 to the average
(61,61,61,61,), where Gy, is the irreducible
two-clectron operator corresponding to interaction
between electrons of the shells nll{Vl and nzlév2 in

the configuration K. The minimal sum takes the
form
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A, w,... and performing summation over n;l;

27 rewrite expression (27) in the form

S (ko | £ |yl ) (vl | § 1hthn X hihn | 8 | hplaw ) (hplp | € | hALE)

Aw,
g

+ (Lo | g | vl ) (vl | 8 |1bln Y (bl | & | ol Y (hplyp | 8 | 1hALE)

+ (o | £ iyl Yl E| 8 | & ) (i | 8 |1phw ) (Lplyp| € | 1AL E)
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Taking out quantum numbers n;/; from the sets

weE

+ (I | § | Lyl Yy | 8 1151 Y1kl | 8 | 1ph ) (aplyp | 8 11ALE),

where Greek letters denote the sets of the
projections m;u; only.

Due to relations (19) and (23), the all four
terms in expression (28) are equal, but the
N-multipliers differ for terms 1,2 and 3,4. Thus,
summation over quantum numbers n;;; must be
taken out from the minimal sum. In Refs. [3,6],
a special operator L was introduced, which acted
on the minimal sum and produced all possible
summations over the quantum numbers of shells
or subshells before the determination of N-multi-

plier.
The summation over the projections of
pLs - yLs 1
Ivlg' lwl" nvl JIEIE, nwlwn”lrl
L+ 11l L 1
[H( 2 y_]go[( D {1 ! k}+ 2 +1)@& +1)

k>0

x (L IC® |l )2 GX(nyly, naly),

Fig. 9. Diagram for the (612@12512512), in the

average

contribution of which the summation over the quantum numbers
of shells remains

(28)

single-electron moments in the minimal sum may
be accomplished algebraically or graphically (using
topological equivalence of the angular momentum
and summation diagrams) [3]. The transformation
of minimal sums to the coupled-momenta basis
considerably simplifies their calculation, because in
this basis the matrix elements of the Hamiltonian
are independent of the projections of angular
momenta.

Transforming the matrix element of the
irreducible operator of the Coulomb interaction
between electrons to the LS coupling scheme, the
following quantity is obtained:

=3 nl N nI nz("Jv"g’gLSlh [nolutghylS)

](luc(") 112 Fe(nl, nl), ifnJ, = n,l, = ngly = n,l, = nl,

S (- 1)’ i*h *L{‘ }ul||d"’u11><12||c"‘)||12>F (nlll,nzlz>+2 [( 1) {1 L L]+——-¢—}

L Lk 20211+ 1)(2y+1)

it nJ,=n,l,=nl, ngg=nyl, =nyl, (29)

where F° and G are radial integrals of the

Coulomb interaction, hC is the irreducible (trace-
less) Coulomb interaction operator, N, , nl, is the
vy

normalization multiplier

12 if nJ, = ngg,

NI =
AT T it gl

(30)
It must be excluded from the matrix element
because of the same normalization condition used
for equivalent and nonequivalent electrons in
Eq. (18). The matrix elements of the irreducible
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operators of the spin-orbit interaction and the
radiative dipole transition coincide with their usual
expressions.

The group-diagrammatic method  described
above has been implemented in a general computer
code which derives the formulae for the averages
in terms of minimal sums and performs their
calculation. A special code for the transformation
of the minimal sums to the coupled-momenta basis
has been written by V.Jonauskas.

4. General expression for the average of the
product of one-electron operators. Averages of
spin-orbit interaction, projection of the angular
momentum, and standard unit operators

The group diagrammatic summation method
was applied for finding explicit expressions of the
main global characteristics of energy levels,
emission and Auger spectra [4-6]. The general
expression for the average of the product of
one-electron operators was obtained in Ref. [1]
and simplified using the diagrammatic method in
Ref. [3]. Here we present also some applications
of this expression for physical operators.

The diagram for the average of the product
of k one-electron operators consists of one or
several loops (Figs. 3 and4). Let us designate the
number of loops h and the number of vertices
in the i-th loop, or its length, by k;.

The number of all possible ways to link k;

L o\ 1 ) k= (a-
(FL.. BN = (N) ;.21 ZZ (=" (‘;_’f) k

X 8ty + ..+ Oy 0Kk, + o Ky k) By - By (34)

For two, three, and four operators acting on
the electrons of the single shell or subshell the
average takes the following simple form:

AN, N —_
(FEW = -Qi(g—_—ﬁ%az, (35)

[ ——

vertices by one loop with the 7 (1 <t <k -1)
downward segments is equal to the mnumber of
permutations of k; — 1 elements during which the
element with the larger number is replaced ¢
times by the element with the smaller number
and is equal to the Euler number A4 , [1]:

t.—1

[l k
A+ k-

Ag-1 = > (1T + 1) l(t~-pl<—1].

1 1

P,:O

(€]
The number of ways to link k vertices by the
loops of length ky,k,,...,k, can be expressed as

Kbk, — k! 1 ’(32)
s kilky! . k! v(Q)WB3)! .. v({k2})!

where v(i) is the number of loops of the same
length linking up i vertices, {k/2} is the integer
part of the number k/2.

The minimal sum B, may be factorized into
h parts corresponding to the separate loops:

Bk = Blek2 e Bkh. (33)

Consequently, the average of the product of k
one-electron operators acting on the electrons of
the same shell or subshell with the number of
states Q and the number of electrons N is
expressed as

k=1 ky,—1
k,.k
> K Y Ao D Ak
h L=1 1=
k, <k)
~aa N N - N)Q-2N)
(FFFY" = QQ-1)(Q-2) Bs. (36)
(FFFEY = NE@ - )

QQ-DQ-2)(Q-3)

X {[(Q—N— NQ-N=-2)—4N-1D@Q@-N-1+ N~ 1)(N—2)]B4+3(N— Q@ -N-DB3}. 67

In the case of spin-orbit interaction, the minimal sum B, is expressed as

B = S @+ )(nlj|p ) = PR (TR A O (R A [ (38)
s nl

J

where {,; is the spin-orbit parameter.
The number of levels of configuration K with

the given total momentum J and the number of
lines of radiative dipole transitions between all



levels of two configurations can be approximately calculated using the formulae [9]

2 2 4
I ((.9] 04| ag=3eq | o _UIT, UL I ]
N&D = ay(8may) H 24a’ B e, 162 [ 7P| 8ay |

NK,K') =
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(39)

(40)

Here g(K) is the statistical weight of configur-
ation K; [J]=2/+1 and a, = [ay(K) + a(K")]/2,

ay = [ay(K) + ay(K')])/2, where a,(K), a,(K) are the
moments of the distribution of eigenvalues of the

operator ng) or its averages:

S (KM I | KM
_ vIM 9 _ <ng)””’61) K

k operators

(41)
For this operator the minimal sum B, is expressed

as
J
= > (njm|jd|njm)* = 3 3 m (@)

jm j m=—j

The minimal sums B, and B,, which appear
in Eq. (41), have the following form for the shell

Y.

iy
B, = Jm[z.(z + 1)t -

102 + 1)* + 7]. (46)
Various physical operators or effective opera-
tors are often expressed in terms of standard unit

operators U(k), AR (k is the rank in the orbital
space, and k' in the spin space), for which the
single electron reduced matrix elements are defined
as

(nllu®|nty = (K}, (47)

(nls[]v(kk’)l}nls) = {Ilk}{%% } (48)

Here {j;jj3} is the triangle delta-function, which
requires the triangle relations for the quantum
numbers j;, j;, and j3; to be satisfied.

The averages of the operators u® or p*)
do not vanish only at k=0 or k=k'=0,
therefore the irreducible one-electron operators

acting on the electrons of the shell IV are given

1 2
B, = E(ZI+1)(4I + 4l + 3), (43) by
He o _ N .
0 U™ =8k, 0) 5 (49)
By = Tp5 L0+ 1) 48 + 96 + 15217 + 1041 + 15),
DUk _ (k) _ 0y .
(44) v =V 3k, 0)3(k", 0) 7o (50)
and for the subshell jN: o
The minimal sums of the product of operators
B. = G+ +1) v &) are expressed in terms of the sum of the
2 = 3 ’ (45)  Clebsch-Gordan coefficients:

B, = 2 (mypy [V | mapy) mapig VD Iy .

[, 1™tk } {ssk} . ..
mlmz..ml
Kby,

1 ky I
{llk,} {ssk;} 2 ‘imzqi ml}

<mt 14— 1|V(l y ‘-l)lmtﬂl)(mt#tlvq‘4')""1”1>

! ky 1 I oky ][ k1
myqoymy| U my gy mp_y|imp g my

12 ki 12][172 k; 172 12 k/_y 12][12 Kk 172
X , ) ] ) .
My Q1 K| | M3 92 K Ko G- K1 (M1 9 M

D
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The tensor operators with nonzero ranks in
the orbital and spin spaces may be joined in
scalar or tensorial products. Let us suppose that
the final rank in both spaces is 0. Performing

summation of the Clebsch-Gordan coefficients
arising from the minimal sum and tensorial
product, we obtain for the averages of two and
three operators

((PE).PHENW %%(Uk}{%%k'}[l—é(k,O)é(k',O)], (52)

N(4l + 2 —N)

( [[wlk;) 5 p(kzka] k) [7(1‘3/‘3)] @w _

T @A+ 2)(4l + 1)4l

kykyks| |k ky k3
DLy 12 12

X [(41 +1=N) - (=)t - 1)] [1 — 8(ky, 0)3(K}, 0)] [1 - d(ky, OSé(ké, 0)] [1 — d(ks, 0) 3(k3, 0)]. (53)

Using the relations (49) and (50), the averages of the standard unit operators may be found, for

example,
Uy, en N _ | N +2=N) C oy NV - 1) 11,
(V) = [(41 T+ 1) TR0 Ty ]“”‘”5%" b S
( [[U(kl) X U(kZ)] (kl)x U(k3)] ” )N e Kok 4] +2 4] key+hy+hy
=@an@nz| 1 W ‘N)[( +1-N)-(-1) N-1)
+ @ +2)(N-1) (6(k1, 0) + S(ky, 0) + d(ks, 0))] + 8(ky, 0)(ky, 0)(k3, 0)(41 + 2)2(N = )(N — 2)}. (55)

Two- and three-electron operators may be expressed in terms of the products of one-electron

operators:

i<j i

(k5) )
[ -

I<)<p

6|1 | I

From Egs. (56) and (57), the expressions follow for the

operators with the complex inner structure:

NN -1)

i<j

kk') (k' L (0 (kk') (kK 1 k'
D (Vg ) )).z E(V( ). ))_Ez (v,( ).

([ = v] . o] @

v(““'>) , (56)

J

0

__llkl k, k3][(u(kl)_v(kl)) N (_l)k1+k2+k3(U(ka'U(k2)) N (U("3)-U<k3)) __N_ <1 + (_l)k,+k2+k3)]. 57)

2+1

averages of two- and three-electron

(3 oFNY = S e [+ DOk 03k, 0) — 1] W Gk, (58)

(k3) ©
H"'(kl) x”}(kz)] 3 xu‘(,kS)] )N _

(3

i<j<p

NN = 1)(N=2) [ky k; k3
341 + 2)(4l + 1)4l

111

X {1 + (~Dathth @+ 2) [6(1(1, 0) + d(ky, 0) + (k3 0)] + 8(ky, 0)3(ky, 0)8(k3, 0) (4] + 2)2} . (59)

A four-electron operator may have a various tensorial structure. The following effective operator

often appears:

i<j<p<q

S (uf0f) () = ga{(mko.u(ko) (-09) - a1 S b




X [qx]m D

i<j<p

?1+1

l<}

Its average is expressed as

([ ] V) + 178 {";

o]
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ky x
! 1}2 (“z(x)'“f(x))]
i<j

(60)

(S (ut(kl).ujcko).(ul(,k,).ugka)y =

i<j<p<gq

= (41 =2)[8(ky, 0)+3(ky, 0]~ 757

These formulae may be useful when introducing
mean characteristics of atomic quantities which

correspond to the averages of some effective
operators.

Conclusions

The general group-diagrammatic summation

method allows summation of atomic quantities to
be performed over all many-electron quantum
numbers in either nonrelativistic or relativistic,
single-configuration or CI approximations. The only
assumption made is that the radial orbitals are
term-independent. The simple rules of this method

Appendix

Expressions for the averages of the products
of one- and two-electron operators

Here we present cxpressions for the averages
of the products of three, four, and five two-elec-
tron operators as well as of two-electron and
one-electron operators  (except (FFG) which is
described by only one diagram). The average of
the product of one-electron operators is expressed
by the explicit formula (34). The principal diagrams
corresponding to the minimal sums in the normal
form are given in Figs. 10-17. In all formulae
below, P(i...q) is the permutation operator (25),
its abbreviated notation P(ijj) means that only the
i-th and the j-th matrix elements are interchanged.
IN(i...q) denotes the sum of the operators of all
possible permutations of i...q matrix elements in
the minimal sum on which the operator is acting.
The operator L produces summation over quantum
numbers n;l; or n;l;j; (see the comment below
Eq. (28)). Ngjagr is the N-multiplier defined by
Eq. (21).

1NN = 1)(N = 2)(N = 3) | 2(ky, k)
6 (4l + 2)(4l + 1)4i(4l —1)

k -
_ (c1iths {1 ! 1}+21 1

2 + 1 Ik,

= [1- (=1yfatE ] [8(ky, 0)+3(ky, 0)]+8(ky, 0)3 (K5, 0)(41—2)(4l+2)}{llk1}{llkz}.

(61)

are convenient for deriving the expressions using
a computer. This gives the possibility to obtain
explicit expressions for the main global character-
istics of the energy level, emission and Auger
spectra, for the mean characteristics of configura-
tion interaction in atoms and other quantities,
which can be expressed by the averages of the
products of operators.
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Fig. 10. Principle diagrams for the average (666 )- The letter
under the diagram designates the corresponding minimal sum

!

Figure 11. Principle diagram for the average (FFFG)
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(GGG)" = NyiagrL {[1 + P(12)]D; + D;}

(FFEGY" = Ny LTI(123)M,

(FFGGY = Nypuel | [1 + P(12)] [1 + P(34)] E +Ey+ [1 + P(34)] (E3 + E4 + Es))

(GGGGYS = Nyl [TN(234)(F, + F, + F3 + Fy) + PA2)[I(234)F,

+ [P(12) + P(14)] [P(23) + P(24) + P(34)]F5 + [P(23) + P(24) + P34)](Fs + F6)}

(FFFFGYS = Ngppl ((1234)5, + [1+P(2){[P(23)+P(24) +P(34)]S,+T1(234)S;}}

(FFFGGY = Nyag L (A23)[1 + P(S))(Iy + I + Iy + I + Iy)

+ [1+ P(13) + P(23)][1 + P(45)]; + [1 + P(12)[[s + [1 + P(12) + P(23)][1 + P(45)]I7}

(FFGGGY = Nyl {1 + PO)IN(34S)(H, + H, + Hs + Hg + H; + Hy + Hy + Hy, + Hyyp)

(A1)

(A2)

(A3)

(A4)

(A53)

(A6)

(A7)

+[1 +P(34)|(H3 +Hyg) +H, + 11(345)(Hy +Hy 3 +H 4 +Hy5s +Hy;) + [1 +P(34) +P(35)]H16}
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(GGGGGY = Niyippel {T1(2345)(G, + Gyg) + TI(12345)(G, + G5 + Go) + P(14)[1 + P(24)]1(345)G,

+ [P(13) + P(15)]T1(2345)[G3 + G, + Gg + Gy) + P(23)[1 + P(13) + P(14)|T1(345)G,

+ T1(124)[1 + P(34) + P(45)]G, + P(13)I1(2345)(G, +Gg) + P(23)[1 + P(13) +P(15)]I1(345)G

+ [1(125)[1 + P(35) + P(45)]G¢ + [1 + P(24)|TI(345)(G + G,)

+ P(12)[1 + P(24)]I1(345)Gg + [P(15) + P(24)]T1(345)(G1; + Gyp)+ [1 + P(45)]G1,

+ P(23)P(14)[1 + P(35) + P(45)]Gy, + P(24)P(13)[1 + P(35) + P(45)](G,, + Gyz3)

+ [1 + P(13) + P(14) + P(15) + P(23) + P(24) + P(25)]G13} (A8)

If one-electron and two-electron operators are
arranged in the average in another than in the
formulae above order such average is described by
the same minimal sums. Its diagrams can be
obtained by interchanging the corresponding
vertices and its expression contains an additional
permutation operator of matrix elements of
different operators.
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